Increased mitochondrial superoxide in the brain, but not periphery, sensitizes mice to angiotensin II-mediated hypertension
نویسندگان
چکیده
Angiotensin II (AngII) elicits the production of superoxide (O2•-) from mitochondria in numerous cell types within peripheral organs and in the brain suggesting a role for mitochondrial-produced O2•- in the pathogenesis of hypertension. However, it remains unclear if mitochondrial O2•- is causal in the development of AngII-induced hypertension, or if mitochondrial O2•- in the absence of elevated AngII is sufficient to increase blood pressure. Further, the tissue specific (i.e. central versus peripheral) redox regulation of AngII hypertension remains elusive. Herein, we hypothesized that increased mitochondrial O2•- in the absence of pro-hypertensive stimuli, such as AngII, elevates baseline systemic mean arterial pressure (MAP), and that AngII-mediated hypertension is exacerbated in animals with increased mitochondrial O2•- levels. To address this hypothesis, we generated novel inducible knock-down mouse models of manganese superoxide dismutase (MnSOD), the O2•- scavenging antioxidant enzyme specifically localized to mitochondria, targeted to either the brain subfornical organ (SFO) or peripheral tissues. Contrary to our hypothesis, knock-down of MnSOD either in the SFO or in peripheral tissues was not sufficient to alter baseline systemic MAP. Interestingly, when mice were challenged with chronic, peripheral infusion of AngII, only the MnSOD knock-down confined to the SFO, and not the periphery, demonstrated an increased sensitization and potentiated hypertension. In complementary experiments, over-expressing MnSOD in the SFO significantly decreased blood pressure in response to chronic AngII. Overall, these studies indicate that mitochondrial O2•- in the brain SFO works in concert with other AngII-dependent factors to drive an increase in MAP, as elevated mitochondrial O2•- alone, either in the SFO or peripheral tissues, failed to raise baseline blood pressure.
منابع مشابه
Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system.
Hypertension caused by angiotensin II (Ang II) infusion is associated with oxidative stress in the peripheral vasculature and kidney. The role of redox mechanisms in the central nervous system (CNS), a tissue known to be pivotal in Ang II-dependent hypertension, has not been investigated. We recently identified superoxide (O2*-) in the brain as a key signaling intermediate in the transient pres...
متن کاملAttenuation of angiotensin II-induced vascular dysfunction and hypertension by overexpression of Thioredoxin 2.
Reactive oxygen species increase in the cardiovascular system during hypertension and in response to angiotensin II. Because mitochondria contribute to reactive oxygen species generation, we sought to investigate the role of thioredoxin 2, a mitochondria-specific antioxidant enzyme. Mice were created with overexpression of human thioredoxin 2 (Tg(hTrx2) mice) and backcrossed to C57BL/6J mice fo...
متن کاملCerebral microvascular inflammation in DOCA salt-induced hypertension: role of angiotensin II and mitochondrial superoxide.
Angiotensin II-mediated hypertension (HTN) is accompanied by a pro-inflammatory and pro-thrombotic state in the cerebral microvasculature. Whether comparable phenotypic changes are elicited in other models of HTN remains unclear. Using wild-type mice with deoxycorticosterone acetate (DOCA) salt-induced HTN and intravital microscopy, we observed significant increases in the adhesion of both leuk...
متن کاملبررسی پاسخدهی عروق مزانتر به آنژیوتانسین I و II در خلال ایجاد پرفشاری خون دو کلیه ای گلدبلات و اثر کاپتوپریل بر آن
Essential hypertension is one of the risk factors of cardiovascular diseases. Hypertension etiology is not completely known, it seems that rennin-Angiotensin system has an important role in its etiology, Thus better recognition of this system and its activity changes or vascular reaction changes to different parts of this system during progressive hypertension can be more effective in better re...
متن کاملTherapeutic targeting of mitochondrial superoxide in hypertension.
RATIONALE Superoxide (O2(-) ) has been implicated in the pathogenesis of many human diseases including hypertension; however, commonly used antioxidants have proven ineffective in clinical trials. It is possible that these agents are not adequately delivered to the subcellular sites of superoxide production. OBJECTIVE Because the mitochondria are important sources of reactive oxygen species, ...
متن کامل